Speaker Details
Bo Li
University of Chicago
Dr. Bo Li is the Neubauer Associate Professor in the Department of Computer Science at the University of Chicago and the University of Illinois at Urbana-Champaign. She is the recipient of the IJCAI Computers and Thought Award, Alfred P. Sloan Research Fellowship, IEEE AI’s 10 to Watch, NSF CAREER Award, MIT Technology Review TR-35 Award, Dean's Award for Excellence in Research, C.W. Gear Outstanding Faculty Award, Intel Rising Star Award, Symantec Research Labs Fellowship, Rising Star Award, Research Awards from Tech companies such as Amazon, Meta, Google, Intel, IBM, and eBay, and best paper awards at several top machine learning and security conferences.
Her research focuses on both theoretical and practical aspects of trustworthy machine learning, which is at the intersection of machine learning, security, privacy, and game theory. She has designed several scalable frameworks for certifiably robust learning and privacy-preserving data publishing.
Her work has been featured by several major publications and media outlets, including Nature, Wired, Fortune, and New York Times.
Talk
Title: Risk Assessment, Safety Alignment, and Guardrails for Generative Models
Abstract: Large language models (LLMs) have garnered widespread attention due to their impressive performance across a range of applications. However, our understanding of the trustworthiness and risks of these models remains limited. The temptation to deploy proficient foundation models in sensitive domains like healthcare and finance, where errors carry significant consequences, underscores the need for rigorous safety evaluations, enhancement, and guarantees. Recognizing the urgent need for developing safe and beneficial AI, our recent research seeks to design a unified platform to evaluate the safety of LLMs and multimodal foundation models from diverse perspectives such as toxicity, stereotype bias, adversarial robustness, OOD robustness, ethics, privacy, and fairness; enhance LLM safety through knowledge integration; and provide safety guardrail and certifications. In this talk, I will first outline our foundational principles for safety evaluation, detail our red teaming tactics, and share insights gleaned from evaluating foundation models on our DecodingTrust and MM DT platforms, including close-source, open-source, and compressed models. Further, I will delve into our methods for enhancing model safety, such as hallucination mitigation. I will also explain how knowledge integration helps align models and prove that the RAG framework achieves provably lower conformal generation risks compared to vanilla LLMs. Finally, I will briefly discuss our efficient and resilient guardrail framework for risk mitigation in practice.